Assessing the Dynamics of Fintech and Financial Inclusion in Reducing Inequality in Malaysia: a Bayesian-Wavelet approach

Main Article Content

Hadjer Boulila
Seyf Eddine Benbekhti
Widad Metadjer

Abstract

This paper examines the impact of FinTech on financial inclusion and inequality reduction in Malaysia within the framework of SDG 10. Using a Bayesian VAR model and wavelet coherence analysis (2004–2022), the study analyzes dynamic links between FinTech, inclusion, inequality, and growth. A FinTech Adoption Index (PCA) and a novel Financial Inclusion Index are constructed. Results reveal bidirectional causality, with FinTech and inclusion jointly reducing disparities and fostering inclusive growth. Policy implications highlight the need for inclusive ecosystems, literacy programs, and adaptive regulation.

Metrics

Metrics Loading ...

Article Details

How to Cite
Hadjer Boulila, Seyf Eddine Benbekhti, & Widad Metadjer. (2025). Assessing the Dynamics of Fintech and Financial Inclusion in Reducing Inequality in Malaysia: a Bayesian-Wavelet approach. IJEP, 8(02), Pages : 228–250. https://doi.org/10.54241/2065-008-002-013
Section
Articles
Author Biographies

Hadjer Boulila, University of Tlemcen (Algeria)

researcher at University of Tlemcen (Algeria)

Seyf Eddine Benbekhti, University of Tlemcen (Algeria)

researcher at University of Tlemcen (Algeria)

Widad Metadjer, University of Dundee (United Kingdom)

Researcher at University of Dundee (United Kingdom)

References

 Boulila, H., Metadjer, W., Elsayed, I., & Benbekhti, S. E. (2024). The digital butterfly effect: unleashing the Islamic banking industry in a post-pandemic era. European Journal of Islamic Finance, 11(2), 36–54.

 Corrado, G., & Corrado, L. (2017). Inclusive finance for inclusive growth and development. Current Opinion in Environmental Sustainability, 24, 19–23. https://doi.org/10.1016/j.cosust.2016.11.001

 Demirgüç-Kunt, A., Klapper, L., Singer, D., Ansar, S., & Hess, J. (2018). The Global Findex Database 2017: Measuring financial inclusion and the fintech revolution. Washington, DC: World Bank.

 Demirgüç-Kunt, A., Klapper, L., Singer, D., Ansar, S., & Hess, J. (2018). Opportunities for expanding financial inclusion through digital technology. In Global Findex Database 2017: Measuring financial inclusion and the fintech revolution (pp. 49–65). Washington, DC: World Bank.

 Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5–6), 561–566. https://doi.org/10.5194/npg-11-561-2004

 Hamid, N. A., Suria, K., Jasni, N. S., & Salleh, K. A. M. (2024). Fintech in Malaysia: Navigating challenges and shaping a digital future. Accounting and Finance Research, 13(1), 1–42. https://doi.org/10.5430/afr.v13n1p1

 Hatta, M., & Alwi, S. F. S. (2021). Fintech development in financial institutions industry: An empirical study on Malaysia Islamic banks. Journal of Academic Research in Business and Social Sciences, 11(3), 487–499. https://doi.org/10.6007/IJARBSS/v11-i3/9029

 Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.

 Klapper, L., & Singer, D. (2017). The opportunities and challenges of digitizing government-to-person payments. The World Bank Research Observer, 32(2), 211–226. https://doi.org/10.1093/wbro/lkx003

 Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18(4), 329–340. https://doi.org/10.1016/j.bir.2017.12.003

 Rua, A., & Nunes, L. C. (2009). International comovement of stock market returns: A wavelet analysis. Journal of Empirical Finance, 16(4), 632–639. https://doi.org/10.1016/j.jempfin.2009.02.002

 Sahay, M. R., von Allmen, M. U. E., Lahreche, M. A., Khera, P., Ogawa, M. S., Bazarbash, M., & Beaton, M. K. (2020). The promise of fintech: Financial inclusion in the post COVID-19 era. Washington, DC: International Monetary Fund.

 Tian, Q., Lewis‐Beck, C., Niemi, J. B., & Meeker, W. Q. (2024). Specifying prior distributions in reliability applications. Applied Stochastic Models in Business and Industry, 40(1), 5–62. https://doi.org/10.1002/asmb.2825

 Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)

 Tran, T. K. O., & Dinh, L. Q. (2024). Digital financial inclusion, financial stability, and sustainable development: Evidence from Vietnam. Sustainable Development, 32(6), 6324–6338. https://doi.org/10.1002/sd.2912

 Vacha, L., & Barunik, J. (2012). Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Economics, 34(1), 241–247. https://doi.org/10.1016/j.eneco.2011.10.007

 Yoon, J. (2015). Partial least squares and principal component analysis with non-metric variables for composite indices. Computational Statistics, 30(2), 573–593. https://doi.org/10.1007/s00180-014-0517-9